CEE-ME 327 Finite Element Methods in Mechanics Fall 2019

Instructors:	Professor Wing Kam Liu and Professor Mark Fleming of Fusion Engineering
Days and Times:	Tu, Th 12:30pm-1:50pm, Tech LR2
Office hour:	Professor Wing Kam Liu: Tu Th 11:15am-12:15pm, Fri 9-10am, Tech A327
	TAs: Mon Wed 3:30pm-5:00pm, Tech A311 or by appointment

TAs and Graders/ Computer Instructors: Satyajit Mojumder and from CEE, Graders: Mahsa Tajdari, Sourav Saha COURSE OBJECTIVES

To learn a) the basic theory behind the finite element method (FEM), b) how to program the FEM using MATLAB, c) how to use a general commercial FEM code to solve practical engineering problems, and d) how to use data science techniques for the interpretation of the FEM solutions and in the solving mechanics of materials problems.

	Topics	Problems
Week 1	Introduction and overview of the course	HW1: 2.1, 2.2(due Oct 3)
Sep 24 & 26	Fish and Belytschko: Ch. 2 (Sections 2.1-2.3): 1D problems, element	
	stiffness matrix, assembly	
Week 2	Fish and Belytschko: Ch. 3 (Sections 3.1-3.6): Strong and weak forms	HW2: 3.1, 3.2, 3.3, 3.7 (due
Oct 1 & 3		Oct 10)
Week 3	Fish and Belytschko: Ch. 4 (Sections 4.1-4.5): Element shape functions,	HW3: 3.10, 4.1, 5.17 (a, b)
Oct 8 & 10	Fish and Belytschko: Ch. 5 (Sections 5.1-5.2): FEM for 1D elasticity	(due Oct 17)
	Optional reading: 1D elasticity, heat conduction	Comp HW1: 1D FEM in
		MATLAB part 1 (due Oct 24)
Week 4	Fish and Belytschko: Ch. 6: Strong and weak forms in 2D	HW4: 5.16, 6.1, 7.1
Oct 15 & 17	ABAQUS Tutorial 1 (Oct 17)	(due Oct 31)
	Supplementary: FEM for 2D & 3D problems with Laplace equation	
Week 5	Fish and Belytschko: Ch. 7 (Sections 7.1-7.2): Shape functions in 2D, Ch. 4	Comp HW2: 2D ABAQUS (due
Oct 22 & 24	(Section 4.6): Gauss quadrature method	Nov 7)
	Supplementary: Lagrangian polynomials and numerical integration	
	Optional reading: Ch. 7 (Sections 7.3-7.8)	
Week 6	Review	
Oct 29 & 31	Midterm	
Week 7	Neural Network (NN), NN-based shape function	Comp HW3: 1D FEM in
Nov 5 & 7	Fish and Belytschko: Ch. 4 (Section 4.6)	MATLAB part 2
	ABAQUS Tutorial 2 (Nov 7)	(due Nov 21)
Week 8	Principle of Virtual Work	Comp HW4: 2D & 3D stress
Nov 12 & 14	Supplementary reading: Elasticity tensor notes, principle of virtual work in	analysis in ABAQUS (due Nov
	multiple dimensions	26) and Using Neural
	Optional reading: Ch. 9: Stress analysis in 2D (supplementary reading)	Network on FEM data (due
	Viscoelasticity and Hyperelasticity	Dec 3)
Week 9	Introduction to Data Science-I (Dimension reduction method: Principle	Comp HW5: Viscoelasticity in
Nov 19 & 21	Component Analysis (PCA))	ABAQUS (due Dec 5)
	ABAQUS Tutorial 3 (Nov 21)	
Week 10	Introduction to Data Science-II (Clustering methods: K-means, Self-	
Nov 26	Organizing Map)	
Nov 28 no lecture		
(Thanksgiving)		
Week 11	Introduction to Data Science-III (Application of data science in mechanics	
Dec 3 & 5	of materials)	
	Review	
Week 12	FINAL EXAM	

GRADING: Written homework 15%, computer assignments 35%, exams 50%

TEXTBOOKS: Required: J. Fish and T. Belytschko. *A first course in finite elements*. Wiley & Sons Ltd., West Sussex, UK, 2007. **Highly Recommended:** T.J.R. Hughes, *The Finite Element Method: Linear Static and Dynamic Finite Element Analysis*. Dover Publications, Inc., Mineola, NY, 2000.